
Problem PA

Counterfeit Money
Time limit: 3 seconds

Memory limit: 1024 megabytes

Problem Description

The banknotes of the ICPC Kingdom have anti-counterfeiting measures. Each banknote has an

exclusive serial number, and this serial number is divisible by 13. In other words, if the serial

number is not divisible by 13, then the banknote is counterfeit. To verify whether a number is

divisible by 13, we can directly divide the number by 13. Yet, there is another method:

Partition the digits of the given decimal number into groups starting from the right, where

each group has three digits. Now, treat each group as a three-digit number. Then, from

the rightmost group, apply subtraction and addition operations alternately to the three-digit

number and obtain the result. If the result is divisible by 13, then the original number is

divisible by 13. Otherwise, it is not.

For example, for the number 123,456,789, if we apply subtraction and addition operations

alternately from the rightmost group of 3 digits, we get 789− 456 + 123 = 456. As 456 is not

divisible by 13, the original number 123,456,789 is not divisible by 13.

For another example, for the number 593,825,856, if we apply subtraction and addition opera-

tions alternately from the rightmost group of 3 digits, we get 856 − 825 + 593 = 624. As 624

is divisible by 13 (624 = 13× 48), the original number 593,825,856 is divisible by 13.

Based on the above method, write a program to verify whether a banknote is counterfeit or

not.

Input Format

The input contains several test cases. The first line stands for the number of test cases 𝑡. The

next 𝑡 lines will each contain a positive number. The given number may contain up to 1000

digits.

Output Format

For each input number, output the absolute value of the result when we apply the above

alternate-add-subtract method. Then, on the same line, output “YES” if the input number is

divisible by 13, and “NO” otherwise. There is a space between the output value and YES/NO.

1



Technical Specification

� 1 ≤ 𝑡 ≤ 1000.

� Each input number may contain up to 1000 digits.

Sample Input 1

2

123456789

593825856

Sample Output 1

456 NO

624 YES

Hint

� string and simulation

� Partition the given number into sets starting from the right, each group has three digits.

We have the following two methods:

– From the rightmost group of 3 digits apply the subtraction and addition operations

alternatively and find the result. If the result is either a 0 or it can be divisible

by 13 completely without leaving a remainder, then the number is divisible by 13

(simulate the statement of problem).

– Numbered the group from the right. Let 𝑆𝑜𝑑𝑑 is the sum of groups with numbered

odd, and 𝑆𝑒𝑣𝑒𝑛 is the sum of groups with numbered even. If |𝑆𝑜𝑑𝑑 − 𝑆𝑒𝑣𝑒𝑛| is either
a 0 or it can be divisible by 13 completely without leaving a remainder, then the

number is divisible by 13.

2



Problem PB

Recurring Decimal to Fractions
Time limit: 3 seconds

Memory limit: 1024 megabytes

Problem Description

Given two strings of numbers representing a fraction smaller than one in recurring decimal form.

The first string 𝑠1 indicates the non-repeating part after the decimal point of the recurring

decimal and the second string 𝑠2 indicates the repeating part of the recurring decimal such as

1

012

means0.1012

Return two integers 𝑛, 𝑑 represent the fraction in the form of numerator and denominator. The

two integers should be relatively prime.

Input Format

The first line contains an integer 𝑇 (≤ 40), representing the number of test cases. Each test case

below contains two lines. For each test case, the first line has two integers 𝑎 and 𝑏 separated

by a space. The second line is a string 𝑠1 with length 𝑎 and the third line is a string 𝑠2 with

length 𝑏.

Output Format

Each test case outputs two integers 𝑛 and 𝑑, separated by a space. The first integer 𝑛 is the

numerator and the second integer 𝑑 is the denominator. It is necessary to simplify the fraction

so that the numerator and denominator are relatively prime.

Technical Specification

� 1 ≤ 𝑎

� 1 ≤ 𝑏

� 1 ≤ 𝑎+ 𝑏 ≤ 10

3



Sample Input 1

2

1 3

0

012

3 1

085

3

Sample Output 1

2 1665

32 375

Hint

� Euclidean algorithm

4



Problem PC

Where the Lantern Lights are Dimming
Time limit: 3 seconds

Memory limit: 1024 megabytes

Problem Description

The Lantern Festival features many lanterns on display. In the darkness of the night, they cast

beautiful shadows and reflections, attracting numerous visitors to come and go. With so many

lanterns on display simultaneously, it’s impossible to showcase the unique features of each. As

such, the organizers switch on the lights of some lanterns while turning off others in rotation.

At any given time, some lanterns are illuminated while others rest. Additionally, some lanterns

remain perpetually off due to malfunctions, missing their chance to dazzle.

To engage the visitors in the Lantern Festival, the organizers also hold a scoring event. If a

visitor is very satisfied with the festival, they will receive a pack of stickers worth 3 points

each, and they will affix one 3-point sticker to each lantern on display. If they feel satisfied,

they will receive a pack of 1-point stickers and place one on each displaying lantern. If they are

disappointed with the festival, they will get a pack of -2 point stickers and apply one to each

displaying lantern. In other words, those lanterns that are resting and not illuminated won’t

have an opportunity to receive any stickers from this visitor. After the festival ends, please

help write a program to calculate the total points from all the stickers on the lanterns.

Input Format

The input begins with a line containing two integers, 𝑛 and 𝑚. The next 𝑛 lines describe the

initial state of 𝑛 lanterns, numbered from 0 to 𝑛− 1. Each of these lines contains two integers:

𝑠𝑖 and 𝑝𝑖. 𝑠𝑖 represents the state of the lantern:

� 1 if the 𝑖-th lantern is initially on,

� 0 if it is off,

� -1 if it is out of order (meaning it is perpetually off and cannot be turned on)

𝑝𝑖 indicates the total points from stickers that are already on the 𝑖-th lantern.

The following 𝑚 lines represent 𝑚 events given in chronological order, each corresponding to

one of two even types: switching or scoring.

� Lines beginning with the letter W signify a switching event. They have two subsequent

integers, 𝑙𝑗 and 𝑟𝑗, which imply that the state of lanterns numbered in the range [𝑙𝑗, 𝑟𝑗]

(inclusive) will be toggled.

5



� Lines beginning with the letter C denote a scoring event by a visitor. These lines have

a single subsequent integer, 𝑞𝑗 ∈ {−2, 1, 3}, indicating the sticker score assigned by the

visitor. Every lantern currently on display receives a sticker with 𝑞𝑗 points from the

visitor.

Output Format

Output a single integer that is the total points from all the lanterns after the festival.

Technical Specification

� 1 ≤ 𝑛 ≤ 1, 000, 000

� 1 ≤ 𝑚 ≤ 1, 000, 000

� 𝑠𝑖 ∈ {−1, 0, 1}

� −10, 000 ≤ 𝑝𝑖 ≤ 10, 000

� 0 ≤ 𝑙𝑗 ≤ 𝑟𝑗 < 𝑛

� 𝑞𝑗 ∈ {−2, 1, 3}

Sample Input 1

3 3

0 0

0 0

0 0

W 0 2

W 1 1

C 3

Sample Output 1

6

Sample Input 2

5 5

1 5

0 0

-1 2

1 0

0 -2

C 1

W 0 4

C -2

W 1 3

C 3

Sample Output 2

9

6



Hint

� Maintaining an integer 𝑦 that is the total points. Initially, 𝑦 =
∑︀

𝑝𝑖.

� Skip all the out-of-order lanterns and build an array 𝐴 for normal lanterns only.

� Maintaining an integer 𝑥 that represents the number of displaying lanterns.

� In each scoring event, 𝑦 is increased by 𝑞𝑗 × 𝑥

� The states of the 𝑛 lanterns are maintained in a segment tree with lazy propogation for

state flipping.

� For a given input range [𝑙𝑗, 𝑟𝑗], find the exact [𝑙′𝑗, 𝑟
′
𝑗] indexes from 𝐴 by using binary search

to skip the out-of-order lanterns. Then, perform a range update within the new range.

The complexity of each scoring event is 𝑂(1), and the complexity of each switching event is

𝑂(log 𝑛). The overall complexity is 𝑂(𝑚 log 𝑛).

7



Almost blank page

8



Problem PD

Quarantine Policy
Time limit: 3 seconds

Memory limit: 1024 megabytes

Problem Description

The 2019 novel coronavirus, COVID-19, can be transmitted between humans through water

droplets and close contact. The transmission is especially easy and fast in relatively crowded

or confined spaces, such as airplanes or trains. If someone is infected with COVID-19, then

passengers occupying the adjacent seats will be infected easily.

To prevent the spread of the virus, we can take precautions, such as washing hands regularly

and avoiding touching our eyes, nose, or mouth, to avoid infection. In addition, governments

have also implemented special measures such as isolation and quarantine for this purpose. For

instance, when someone on an airplane caught the coronavirus, the person will need to be

isolated. Moreover, persons occupying the seats adjacent to the infected person will need to

be quarantined. Precisely, there are two types of adjacent seats. One is directly adjacent, that

is the seat is in the front, rear, left, or right of the virus seat. The other one is diagonally

adjacent, that is the seat is in the front-left, front-right, rear-left, or rear-right of the virus seat.

In the quarantine policy, someone whose seat is directly adjacent will be quarantined for 𝑑1

days, and someone whose seat is diagonally adjacent will be quarantined for 𝑑2 days. If there

is more than one infected person adjacent to some seat, the number of days of quarantine will

not be accumulated.

Please write a program to output which seats whose occupying persons need to be quarantined,

and the number of days of quarantine. If a seat whose occupying person needs to be quarantined

for different days, output the maximum of such days.

Input Format

The input contains several test cases. The first line stands for the number of test cases 𝑡. For

each test case, the first line contains four integers 𝑛,𝑚, 𝑑1, 𝑑2 (0 < 𝑛,𝑚 ≤ 100, 1 ≤ 𝑑2 ≤ 𝑑1 <

10), which stands for that there are 𝑛 lines and 𝑚 columns of the airplane, and a seat will be

quarantined 𝑑1 days if the seat is adjacent to the virus seat directly (i.e., front, rear, left, right),

and a seat will be quarantined 𝑑2 days if it is adjacent to the virus seat in the diagonal directions

(front-left, front-right, rear-left, rear-right). The next 𝑛 lines contain exactly 𝑚 characters and

represent the seats on the airplane.

Each healthy seat is represented by a ‘.’ character and each virus seat is represented by a ‘V’

character.

9



Output Format

For each airplane, first print the following message in a line alone:

Airplane #𝑧:

where 𝑧 stands for the label of the airplane (starting with 1). The next 𝑛 lines replace each

‘.’ character in the input seats by the corresponding number of days to quarantine for that

seat.

Technical Specification

� 1 ≤ 𝑡 ≤ 1000.

� 0 < 𝑛,𝑚 ≤ 100.

� 1 ≤ 𝑑2 ≤ 𝑑1 < 10.

Sample Input 1

2

4 4 7 3

.V..

....

..V.

....

2 2 1 1

V.

..

Sample Output 1

Airplane #1:

7V70

3773

07V7

0373

Airplane #2:

V1

11

Hint

� simulation

� Similar as UVA10189 (Minesweeper): counts the total mines adjacent to a square.

� The differences are (1)There are two types of adjacent seats: adjacent directly and diag-

onal direction. (2) If there is more than one confirmed case adjacent to someone on the

same flight, the number of days of quarantine will not be accumulated.

10



Problem PE

Slabstones Rearrangement
Time limit: 3 seconds

Memory limit: 1024 megabytes

Problem Description

Babara has a garden. She has bought some rectangular slabstones and worked out an initial

placement of all slabstones in the garden. The shape of the garden is rectangular. An edge

of a slabstone should be either parallel or orthogonal to an edge of the garden. There exists a

slabstone touching the left, right, bottom, and top edges of the garden, respectively. All the

slabstones are contained in the garden. Meanwhile, none of the slabstones overlap in the initial

placement. Babara enjoys stepping slabstones from one to another every day. However, Babara

would like to redesign her garden to make room for some other purposes. She is wondering how

tight the slabstones can be packed together if they can only be shifted horizontally (i.e., left

or right) without changing their vertical coordinates. Furthermore, if the vertical dimensions

of any two slabstones overlap (not including touching of their ends), their relative locations in

the horizontal direction should be maintained. That is, if the vertical dimensions of slabstones

R and Q overlap and, before shifting, slabstone Q is on the right of slabstone R, Q should be

still on the right of R after shifting or vice versa. Besides, there is a minimal horizontal spacing

between two slabstones during slabstone rearrangement if their vertical dimensions overlap.

The slabstones should remain non-overlapping after shifting. Nevertheless, their horizontal

edges may touch. Now you are asked to help Babara calculate the largest area that can be

spared for other purposes.

Input Format

The first line holds an integer specifying the number of test cases. It is then followed by the

input data of the test cases. The first line of the input for each test case gives two integers.

The first one specifies the number of rectangular slabstones whereas the second one gives the

minimal horizontal spacing between two slabstones. Then, each of the following lines contains

four integers. The first two integers specify the initial x and y coordinates of the bottom-left

corner of a slabstone in the garden. The remaining two integers specify the initial x and y

coordinates of the top-right corner of a slabstone. Two adjacent numbers are separated by a

whitespace.

Output Format

The output of a test case takes a line. It contains the largest area saved by shifting the

slabstones. If no area can be saved, just output zero.

11



Technical Specification

� The number of test cases is not more than 32.

� All the coordinates are 32-bit unsigned integers.

� A garden’s area is not larger than the maximal 32-bit unsigned integer.

� The width and length of a slabstone are 32-bit unsigned integers. They should be larger

than zero.

� The minimal horizontal spacing between any two slabstones is a 32-bit unsigned integer

and should be greater than zero.

� The number of slabstones is from 4 to 100.

Sample Input 1

2

4 2

2 6 4 12

8 4 16 8

7 10 11 16

18 4 20 18

6 4

2 5 4 11

2 14 6 17

7 10 10 16

9 4 16 7

11 11 16 14

18 4 20 18

Sample Output 1

28

0

Hint

� Longest path on DAC for geometric objects

� The relative horizontal positions of rectangles (i.e., slabstones) need to be converted into

a directed acyclic graph where a rectangle is treated as a vertex and the overlapping of

two rectangle’s vertical dimensions has to be modeled as an edge. Hence, a directed edge

from rectangle X to rectangle Y means that rectangle X is positioned relaively to the

left of rectangle Y and their vertical dimensions overlap. Associated with each vertex is

the width of the underlying rectangle whereas associated with each edge is the minimal

spacing between two rectangles. Once an drected acyclic graph is ready, a longest path

algorithm can be aplied to find out the required X dimension of a garden. As a result,

we can obtain the largest area that can be saved.

12



Problem PF

Baker’s Dilemma
Time limit: 3 seconds

Memory limit: 1024 megabytes

Problem Description

A baker has 𝑁 bakery orders from customers that he must fulfill, but he can only handle one

order a day. For the 𝑖𝑡ℎ order, the baker needs to spend 𝐷𝑖 (1 ≤ 𝐷𝑖 ≤ 1000) consecutive days

to complete it; however, for every day of delay, the baker must be fined 𝑆𝑖 (1 ≤ 𝑆𝑖 ≤ 10000).

For example, if the baker receives four orders to make biscuits, the number of days required

for each order is 3, 1, 2, 5, and the penalty for each day of delay is 4, 1000, 2, 5. If the baker’s

work order is 1 2 3 4, the penalty will be 4×0+1000×3+2×4+5×6 = 3038, but if the work

order is 2 1 3 4, the penalty will be 1000×0+4×1+2×4+5×6. 0+4×1+2×4+5×6 = 42,

so the latter penalty is less. Please write a program to help the baker to find out the sequence

of work which has the least penalty.

Input Format

The first line of the input has a positive integer 𝑇 representing the number of groups of data.

Then, there are 𝑇 groups of data. For each group, the first line has an integer 𝑁 between 1 and

1000 representing the number of orders, followed by 𝑁 lines, each with two integers separated

by a space character, representing the number of days required for each order, 𝐷, and the

penalty, 𝑆, for each day of delay, in that order.

Output Format

For each set of data, output the sequence of jobs with the smallest penalty on one line. Each

job is represented by its number, separated by a blank character. If there is more than one set

of answers, print the one with the smallest dictionary order. Note that each group of jobs is

numbered starting with 1.

Technical Specification

� 1 ≤ 𝑇 ≤ 1000.

� 1 ≤ 𝑁 ≤ 1000.

� 1 ≤ 𝐷𝑖 ≤ 1000,∀1 ≤ 𝑖 ≤ 𝑁 .

� 1 ≤ 𝑆𝑖 ≤ 10000,∀1 ≤ 𝑖 ≤ 𝑁 .

13



Sample Input 1

2

4

3 4

1 1000

2 2

5 5

5

3 4

1 1000

8 8

2 2

5 6

Sample Output 1

2 1 3 4

2 1 5 3 4

Hint

First, we assume that, in a group, all orders are received at the same time (say time 0). The

different permutation will have different penalty. We can sort these orders according to the

product of finished time and penalty, that is, employing greedy policy.

14



Problem PG

A Packing Problem
Time limit: 1 second

Memory limit: 1024 megabytes

Problem Description

Jade is having fun playing around with items and boxes. She is wondering whether or not the

items she has can be packed into the boxes. The scenario is described as follows.

Jade has 𝑚 boxes ℬ := { 𝐵1, 𝐵2, . . . , 𝐵𝑚 } that are nonidentical to each other. Despite the

nonidentical appearances of the boxes, they have a uniform size 𝑇 . On the other hand, she has

𝑛 items ℐ := { 𝐼1, 𝐼2, . . . , 𝐼𝑛 }, where item 𝐼𝑗 has size 𝑎𝑗 that is either 𝑠1 or 𝑠2 for some 𝑠1, 𝑠2.

In other words, 𝑎𝑗 ∈ {𝑠1, 𝑠2} for all 1 ≤ 𝑗 ≤ 𝑛. Furthermore, it is known that 0 < 𝑠1, 𝑠2 ≤ 𝑇

and 𝑠1, 𝑠2 /∈ (𝑇/4, 3𝑇/4). That is, either 𝑠𝑖 ≤ 𝑇/4 or 𝑠𝑖 ≥ 3𝑇/4 for 𝑖 ∈ {1, 2}.

In Jade’s rule of thumb for packing the items, not every item can be placed in every box. In

particular, she has associated each item 𝐼𝑗 with a subset 𝑃𝑗 ⊆ ℬ which denotes the set of boxes

in which item 𝐼𝑗 is allowed to be placed. To be precise, item 𝐼𝑗 can be placed in box 𝐵𝑖 if and

only if 𝐵𝑖 ∈ 𝑃𝑗. For convenience, for any 𝐵𝑖 ∈ ℬ, also define 𝑃−1
𝑖 := { 𝐼𝑗 ∈ ℐ : 𝐵𝑖 ∈ 𝑃𝑗 } to be

the set of items that are allowed to be placed in box 𝐵𝑖.

Under this scenario, Jade is wondering, whether or not it is possible to pack all the items in

the boxes such that the total size of the items in each box is at most 𝑇 . In other words, Jade

is interested in knowing the existence of an assignment function 𝜎 : ℐ ↦→ ℬ such that

� For any 𝑗 with 1 ≤ 𝑗 ≤ 𝑛, 𝜎(𝐼𝑗) = 𝐵𝑖 only if 𝐵𝑖 ∈ 𝑃𝑗.

� For any 𝑖 with 1 ≤ 𝑖 ≤ 𝑚, ∑︁
𝐼𝑗∈𝜎−1(𝐵𝑖)

𝑎𝑗 ≤ 𝑇.

In particular, if there exists no such assignment, then we say that the box size 𝑇 is infeasible.

As a known fact, one way to certify the infeasibility of any 𝑇 ≥ 0 in the above scenario is to

demonstrate a set of variables 𝛼𝑗 and 𝛽𝑖 for all 𝐼𝑗 ∈ ℐ, 𝐵𝑖 ∈ ℬ such that the linear constraints

listed below in LP-(t) with 𝑡 := 𝑇 is satisfied.

In other words, there exists a set of valid estimations on the sizes of the items and boxes in the

sense that, whenever the total size of an item combination 𝐶 is at most the size of a box 𝐵𝑖,

so is their total estimated sizes. Furthermore, the total estimated item sizes are strictly larger

than the total estimated sizes of the boxes.

While knowing the above fact and feeling that the box size 𝑇 may not be feasible for the items,

15



∑︁
1≤𝑗≤𝑛

𝛼𝑗 >
∑︁

1≤𝑖≤𝑚

𝛽𝑖 LP-(t)

∑︁
𝐼𝑗∈𝐶

𝛼𝑗 ≤ 𝛽𝑖, for any 1 ≤ 𝑖 ≤ 𝑚 and any 𝐶 ⊆ 𝑃−1
𝑖 such that

∑︁
𝐼𝑗∈𝐶

𝑎𝑖 ≤ 𝑡.

Jade has a hard time finding such a set of variables. One day, Jade’s best friend, Mike, dropped

by and said

The instance you give is very hard to pack! Why don’t you try to prove that the

box size ( 1 + 3/4 ) · 𝑇 is feasible?

While it is easier to use boxes with enlarged size ( 1 + 3/4 ) ·𝑇 , Jade insists that each box must

not contain more than one item with size strictly larger than 𝑇/4!

Provided the above information, your task in this problem is to help Jade compute either

1. An assignment 𝜎 for the enlarged box size ( 1 + 3/4 ) · 𝑇 such that no box contains more

than one item with size strictly larger than 𝑇/4, or

2. A set of 𝛼𝑗 and 𝛽𝑖 that satisfies LP-(t) with 𝑡 := 𝑇 which shows that the box size 𝑇 is

infeasible for the items.

Input Format

The first line contains two integers 𝑛 and 𝑚, which denote the number of items and the number

of boxes. Then there are 𝑛 lines, each of which describes the parameters for the 𝑛 items. In

particular, the 𝑗𝑡ℎ line starts with two integers 𝑎𝑗 and 𝑝𝑗, the size of 𝐼𝑗 and the cardinality of

𝑃𝑗. Then 𝑝𝑗 integers follow, which denote the indexes of the boxes in 𝑃𝑗. The last line contains

a single integer 𝑇 .

You may assume that the indexes of the boxes are numbered from 1 to 𝑚.

Output Format

Depending on the resulting outcome, the output format is different.

If an assignment for box size ( 1 + 3/4 ) · 𝑇 is found, then print in the first line the string

”Assignment”. Print in the second line 𝑛 integers which denotes the indexes of the boxes in

which the 𝑛 items are placed. If there are multiple answers, print any of them.

On the other hand, if a set of 𝛼𝑗 and 𝛽𝑖 that satisfy LP-(t) with 𝑡 := 𝑇 is found, then print

in the first line the string ”Proof”. Print the values of 𝛼𝑗 for all 1 ≤ 𝑗 ≤ 𝑛 and 𝛽𝑖 for all

1 ≤ 𝑖 ≤ 𝑚 in two lines separately. If there are multiple solutions, print any of them that

satisfies the following two conditions.

16



� 𝛼𝑗 and 𝛽𝑖 are non-negative integers for all 1 ≤ 𝑗 ≤ 𝑛 and 1 ≤ 𝑖 ≤ 𝑚.

� max ( max1≤𝑗≤𝑛 𝛼𝑗, max1≤𝑖≤𝑚 𝛽𝑖 ) ≤ 3× 105.

Technical Specification

� 1 ≤ 𝑛 ≤ 100, 1 ≤ 𝑚 ≤ 100.

� 𝑇 is a multiple of 4. Furthermore, 1 ≤ 𝑇 ≤ 105.

� For both 𝑖 ∈ {1, 2}, either 1 ≤ 𝑠𝑖 ≤ 𝑇/4 or 3𝑇/4 ≤ 𝑠𝑖 ≤ 𝑇 must hold.

� 𝑎𝑗 ∈ {𝑠1, 𝑠2} for all 1 ≤ 𝑗 ≤ 𝑛.

For the output, the following conditions must be satisfied.

� 𝛼𝑗 and 𝛽𝑖 are non-negative integers for all 1 ≤ 𝑗 ≤ 𝑛 and 1 ≤ 𝑖 ≤ 𝑚.

� max ( max1≤𝑗≤𝑛 𝛼𝑗, max1≤𝑖≤𝑚 𝛽𝑖 ) ≤ 3× 105.

Sample Input 1

3 3

4 2 1 2

4 2 2 3

4 2 3 1

4

Sample Output 1

Assignment

1 2 3

Sample Input 2

4 3

4 2 1 2

4 2 2 3

4 2 3 1

4 3 1 2 3

4

Sample Output 2

Proof

1 1 1 1

1 1 1

Hint

This problem is a variation of the minimum makespan scheduling problem, where the target

makespan is fixed to 𝑇 and the processing times of the jobs are either large, i.e., ≥ 3𝑇/4, or

small, i.e., ≤ 𝑇/4.

The goal of this problem is to produce either a scheduling for which the makespan is at most

(1 + 3/4)𝑇 or a proof showing the impossibility of scheduling to meet the target makespan 𝑇 .

One default solution here is a local search algorithm but alternative methods for producing

assignments and proofs may be possible and open to the contestants.

17



In the default solution, we pack the items one by one. When considering an item, use a local

search algorithm with a fixed set of rules to arrange a slot for the item. When this process

succeeds, we have a valid partial assignment for the items considered so far. When this process

fails, we obtain a way to forming the proofs from the structure given by the local search

algorithm.

For the remaining details, please refer to the following paper.

Klaus Jansen and Lars Rohwedder, ”On the configuration-lp of the restricted assignment prob-

lem”, SODA 2017.

18



Problem PH

Bank Deposit Challenge
Time limit: 1 second

Memory limit: 1024 megabytes

Problem Description

𝑁 banks offer their own one-year deposit activities. For bank 𝑖, (𝑣𝑖, 𝑤𝑖) denotes the yearly

deposit interest and deposit limit of its activity, respectively. When a depositor selects the

activity of bank 𝑖, he/she must deposit an amount of money equal to 𝑤𝑖 to cover a whole

year. Note that a depositor can choose an activity only once. If a depositor has only cash

𝐶 to participate in the deposit activities, what is the maximum deposit interest he/she can

earn?

Input Format

The first line is an integer representing the cash 𝐶. The second line contains 𝑁 integers, where

the 𝑖-th integer indicates 𝑣𝑖. The third line also contains 𝑁 integers, where the 𝑖-th integer

indicates 𝑤𝑖. Note that there is a space between adjacent integers.

Output Format

An integer specifying the maximum deposit interest the depositor can earn. If no deposit

interest can be earned, please output 0.

Technical Specification

� 1 ≤ 𝑁 ≤ 100.

� 1 ≤ 𝐶 ≤ 1, 000. (unit: ten thousand dollars)

� 1 ≤ 𝑣𝑖 ≤ 540. (unit: one thousand dollars)

� 1 ≤ 𝑤𝑖 ≤ 300. (unit: ten thousand dollars)

19



Sample Input 1

100

10 5 15 7

20 30 50 70

Sample Output 1

30

Sample Input 2

500

72 2 2 10 12 10 10 17 13 15

120 10 5 20 25 100 80 300 50 100

Sample Output 2

144

Sample Input 3

5

1 2

10 20

Sample Output 3

0

Hint

� This problem can be considered a knapsack problem.

� Dynamic Programming.

20



Problem PI

The Pentagon Conjecture
Time limit: 10 seconds

Memory limit: 1024 megabytes

Problem Description

Counting the number 𝑘(𝐻,𝐺) of copies of a designated subgraph 𝐻 in a given undirected simple

graph 𝐺 efficiently can be challenging. For example, counting 𝑘(𝐶3, 𝐺) for an 𝑛-node graph

𝐺 may require Ω(𝑛3−𝛿) time for any constant 𝛿 > 0 if your algorithm is “combinatorial.” By

𝐶𝑘, we denote the simple cycle of length 𝑘. When the designated subgraph 𝐻 becomes more

complicated, the running time required to count 𝑘(𝐻,𝐺) usually grows very quickly.

Figure 1: A pyramid 𝑃 is an undirected simple graph consisting of 5 nodes and 8 edges, as
depicted above. It is not hard to check that 𝑘(𝐶3, 𝑃 ) = 4, 𝑘(𝐶4, 𝑃 ) = 5, and 𝑘(𝐶5, 𝑃 ) = 4.

Bob is a researcher who needs to detect rare events in a given graph network. For example, in

a random graph 𝑅 of 𝑛 nodes in which each edge is included with probability 1/2, 𝑘(𝐶3, 𝑅) =(︀
𝑛
3

)︀
/8 in expectation. If he finds that 𝑘(𝐶3, 𝑅) deviates significantly from the expectation,

he may conclude that 𝑅 is unlikely to be a random graph generated by the above process.

Bob is studying the correlation between 𝑘(𝐶3, 𝐺) and 𝑘(𝐶5, 𝐺) for 𝑛-node graphs. There is a

conjecture saying that, for any 𝑛-node undirected simple graph 𝐺, if

𝑘(𝐶3, 𝐺) ≥ 5

4

(︁
𝑛1.5 +

𝑛

2

)︁
,

then 𝑘(𝐶5, 𝐺) > 0. Your task is to implement an efficient algorithm that verifies whether the

conjecture is false.

Input Format

The first line contains exactly one integer 𝑡 indicating the number of testcases. Then the

testcases follow. For each testcase, the first line contains exactly two integers 𝑛 and𝑚, separated

21



by a space. 𝑛 denotes the number of nodes in the given undirected simple graph 𝐺, and 𝑚

denotes the number of 𝐶3s given in the subsequent lines. The set of edges in 𝐺 is exactly the

union of the edges in the given 𝐶3s. Each of the subsequent 𝑚 lines contains exactly three

distinct integers 𝑥, 𝑦, and 𝑧, separated by a space, where 𝑥, 𝑦, and 𝑧 denote a distinct 𝐶3 in 𝐺

with end-nodes at 𝑥, 𝑦, and 𝑧. The nodes in 𝐺 are numbered from 1 to 𝑛.

Output Format

For each testcase, output the 5 node identifiers of any pentagon in 𝐺 in order on a line if

𝑘(𝐶5, 𝐺) > 0 (i.e. output a set of 5 nodes 𝑥1𝑥2𝑥3𝑥4𝑥5 so that (𝑥𝑖, 𝑥𝑖+1) is an edge for each

1 ≤ 𝑖 ≤ 4 and (𝑥1, 𝑥5) also is an edge; if there are multiple solutions, output any of them); or

otherwise output “-1” on a line.

Technical Specification

� 1 ≤ 𝑡 ≤ 10.

� 1 ≤ 𝑛 ≤ 104.

� 𝑚 = ⌈5/4(𝑛1.5 + (𝑛/2))⌉.

22



Sample Input 1

1

7 28

1 2 3

1 2 4

1 2 5

1 2 6

1 2 7

1 3 4

1 3 5

1 3 6

1 3 7

1 4 5

1 4 6

1 4 7

1 5 6

1 5 7

1 6 7

2 3 4

2 3 5

2 3 6

2 3 7

2 4 5

2 4 6

2 4 7

2 5 6

2 5 7

2 6 7

3 4 5

3 4 6

3 4 7

Sample Output 1

1 2 3 4 7

Hint

� It may help to check when the union of three triangles contains a pentagon.

� For graphs containing a sufficient number of triangles, it is a known fact that they must

also contain at least one pentagon, as shown by Bollobás and Győri in 2007. The proof

by Bollobás and Győri itself yields a deterministic 𝑂(𝑛2)-time algorithm. An alternative

algorithm to solve this problem is based on the following provable fact. Any of such

23



graphs must have 𝑂(
√
𝑛) nodes that are part of some pentagons. Consequently, one can

select a random node, check in 𝑂(𝑚) time whether the node is part of any pentagon,

and repeat this until a pentagon is found. This results in a randomized algorithm with

expected running time of 𝑂(𝑛2).

24



Problem PJ

Lead Time Estimation
Time limit: 1 second

Memory limit: 1024 megabytes

Problem Description

The lead time is critical for earning orders, and several issues would result in various lead times

when preparing the products. For example, the processes switched between different working

areas and the workload of each process. The production manager should accurately estimate

the lead time for the target products when the order inquiry is received. Please develop a

program to help the product manager estimate the lead time.

The lead time of an inquiry stands for the production time, including several jobs such as

material preparation, manufacturing, quality checking, shipping, etc. The processing time of

each position could be determined by an execution time while transferring the process from

one job to the next requires a transmission time. For an inquiry, the production manager has

three pieces of information about the target products.

� The number of jobs and transmissions, e.g. |𝑇 𝑗| and |𝑇 𝑡|,

� the processing time of each job, where 𝑇 𝑗 = {𝑡𝑗0, 𝑡
𝑗
1, 𝑡

𝑗
2, . . . , 𝑡

𝑗
|𝑇 𝑗 |−1

}, and

� the transmission time between jobs, where 𝑇 𝑡 = {𝑡𝑡0, 𝑡𝑡1, 𝑡𝑡2, . . . , 𝑡𝑡|𝑇 𝑡|−1}.

The process may begin or end with several starting jobs. This situation could easily insert

virtual starting and finishing jobs to simplify the problem. We can assume that the inquiry

processes include one starting job and one finishing job.

Input Format

The input includes three parts: (1) the number of jobs and transmissions in the first row, (2)

the job processing time in the second row, and (3) the transmission time in the remaining

rows. The first input row consists of |𝑇 𝑗| and |𝑇 𝑡| with a space for the separation. The second

input row should be 𝑇 𝑗, and the comma separates each element in 𝑇 𝑗. The transmission time

information is revealed from row number three to (2 + |𝑇 𝑡|). Each row of transmission time

information involves three data: the source job, the destination job, and the transmission time.

Moreover, the test cases have some restrictions.

� There may be one transmission time for any pair of jobs at most.

� There may be multiple cases in a file.

25



Output Format

The total time of delivering the products that is denoted by 𝑧 should be provided, and that

means all jobs should be done in 𝑧. Also, the production manager is interested in the manu-

facturing process. If there is exactly one processing path that dominates the lead time, please

output the job sequence of the processing path and the letter “M” in upper case otherwise. A

comma separates each element in the output sequence. In other words, the output sequence

should be like either “𝑧,𝑣1,𝑣2,. . . ” or “𝑧,M”, where 𝑣1 and 𝑣2 represent the jobs.

Technical Specification

Each inquiry includes precisely one entry and one exit. In each inquiry, at least one path will

dominate the lead time, indicating no cyclical manufacturing processes. The boundaries of each

variable are listed as follows.

� 2 ≤ |𝑇 𝑗| ≤ 50.

� 1 ≤ |𝑇 𝑡| ≤ 100.

� 1 ≤ 𝑡𝑗𝑥, 𝑡
𝑡
𝑦 ≤ 50.

26



Sample Input 1

8 11

2,7,2,6,5,1,2,7

6 7 2

0 1 4

0 2 2

1 3 6

1 4 5

1 5 3

2 4 1

3 6 2

3 7 9

4 5 2

5 7 2

Sample Output 1

41,0,1,3,7

Sample Input 2

6 7

10,8,9,10,11,12

0 1 1

1 2 2

1 3 3

1 4 4

2 5 5

3 5 6

4 5 7

6 7

10,8,9,11,11,12

0 1 1

1 2 2

1 3 4

1 4 4

2 5 5

3 5 7

4 5 7

Sample Output 2

53,0,1,4,5

53,M

Hint

� The lead time of first case is 53. There is only one processing path that dominates the

lead time, e.g 0 → 1 → 4 → 5, so the program outputs the sequence “53,0,1,4,5”.

27



� The lead time of second case is also 53, but there are two dominated processing paths:

0 → 1 → 3 → 5 and 0 → 1 → 4 → 5. Therefore, the output sequence is “53,M”.

28



Problem PK

Chemical Storage
Time limit: 1 second

Memory limit: 1024 megabytes

Problem Description

International Chemical Producing Company (ICPC) is an international company that

manufactures various chemicals. The company built several chemical rooms for storing chemi-

cals. They made a short railroad to connect two chemical rooms for convenience to move the

chemicals. The network of the chemical rooms and the railroads form a special tree graph in

which all the nodes are within distance 2 of a central path. We label each node a number

sequentially from 1. Fig. 2 gives an example of networks.

Figure 2: An example of networks with chemical rooms and railroads.

Each chemical product will be stored in a tank placed in a chemical room. Since the chemicals

may leak into the air, the safety rule is that the chemicals cannot be placed in two adjacent

rooms to avoid adverse chemical reactions between the chemicals. Fig. 3 gives two chemical

placement network examples: (a) is safety, and (b) is unsafety.

Figure 3: Two examples of chemical placement networks: (a) safety and (b) unsafety.

29



Sometimes, the workers must clean the tanks and move some chemicals to the other chemical

rooms. Peter is the worker, and his manager will assign him a task with two safety placement

networks: the source network 𝑇𝑠 and the destination network 𝑇𝑑. A task is called 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒

if a possible strategy exists to move the chemicals from 𝑇𝑠 to 𝑇𝑑 following the safety rules;

otherwise, it is called 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒. Notice that we do not restrict chemicals to be placed in a

specific room. If 𝑇𝑠 and 𝑇𝑑 are the same, the task is also treated as feasible. Fig. 4 and Fig. 5

show examples of feasible and infeasible tasks, respectively.

Figure 4: A feasible task: (a) the source network, (b) move the chemical from 4 to 5, (c) move
the chemical from 1 to 2, (d) move the chemical from 2 to 3, (e) move the chemical from 5 to
4 to the destination network.

Figure 5: An infeasible task: (a) the source network, (b) the destination network.

Please write a program to help Peter judge whether a task is feasible or not.

30



Input Format

The first line contains exactly one integer 𝑡, which represents the number of test cases. Each

test case below contains four lines. For each test case, the first line contains two integers 𝑛

and 𝑚, where 𝑛 represents the number of chemical rooms and 𝑚 represents the number of

chemicals; the second line contains 𝑛 − 1 integers 𝑟1, 𝑟2, · · · 𝑟𝑛−1, which represents that room

𝑖+ 1 has a railroad connecting to room 𝑟𝑖 for 1 ≤ 𝑖 ≤ 𝑛− 1; the third line contains 𝑚 integers

𝑠𝑗 for 1 ≤ 𝑗 ≤ 𝑚, representing the room numbers in which chemicals are placed at the source

network; and the fourth line contains 𝑚 integers 𝑑𝑘 for 1 ≤ 𝑘 ≤ 𝑚, representing the room

numbers in which chemicals are placed at the destination network.

Output Format

Each test case outputs 1 if the task is feasible, otherwise outputs 0 in a line.

Technical Specification

� 5 ≤ 𝑡 ≤ 10.

� 1 ≤ 𝑚 ≤ 𝑛 ≤ 10, 000.

� 1 ≤ 𝑟𝑖 < 𝑖+ 1, 1 ≤ 𝑖 ≤ 𝑛− 1.

� 1 ≤ 𝑠𝑗 ≤ 𝑛 and 𝑠𝑝 ̸= 𝑠𝑞 if 𝑝 ̸= 𝑞, 1 ≤ 𝑑𝑗 ≤ 𝑛 and 𝑑𝑝 ̸= 𝑑𝑞 if 𝑝 ̸= 𝑞.

31



Sample Input 1

6

4 2

1 2 2

1 4

3 4

4 2

1 2 2

1 4

1 4

5 2

1 2 2 4

1 4

3 4

11 4

1 2 3 4 5 2 4 3 5 8

1 6 7 8

1 3 5 8

11 4

1 2 3 4 5 2 4 3 5 8

1 3 5 8

7 8 9 10

10 5

1 2 3 4 2 3 3 6 4

2 4 7 8 9

1 5 6 7 8

Sample Output 1

0

1

1

0

1

1

Hint

This problem was inspired by the sliding token problem for trees introduced in [1], in which a

linear time algorithm proposed.

A node with chemical is called chemical node. Let 𝐼𝑠 and 𝐼𝑑 be the (independent) sets of

chemical nodes of 𝑇𝑠 (source network) and 𝑇𝑑 (destination network), respectively. For a set 𝐼

of chemical nodes in a network, 𝑇 , a chemical node in 𝐼 is called rigid if it cannot move at all.

We can apply the following rules to identify the rigid nodes.

1. If |𝑇 | = 1 with one chemical node 𝑢, then 𝑢 is rigid.

2. Suppose |𝑇 | ≥ 2. A chemical node 𝑢 in the chemical node set 𝐼 of 𝑇 is rigid if and only

if for every neighbor 𝑣 of 𝑢 in 𝑇 , there exists a chemical node 𝑤 in 𝐼 ∩ 𝑇 𝑣
𝑤 is rigid, where

32



𝑇 𝑣
𝑤 is the subtree containing 𝑣 and 𝑤.

The algorithm is based on the following two key points.

1. If 𝐼𝑠 and 𝐼𝑑 have different placements of rigid nodes, then the task is unfeasible.

2. Otherwise, we obtain a forest by deleting the rigid nodes together with their neighbors.

The answer is feasible as long as each tree in the forest contains the same number of

chemical nodes in 𝐼𝑠 and 𝐼𝑑.

Then, the following algorithm efficiently finds the rigid nodes iteratively.

1. Define and compute 𝑑𝑒𝑔𝐼(𝑤) = |𝑁(𝑇,𝑤) ∩ 𝐼| for all vertices 𝑤 ∈ 𝑉 (𝑇 ), where 𝑁(𝑇,𝑤)

denotes the neighbors of 𝑤 in 𝑇 .

2. Define and compute 𝑀 = { 𝑢 ∈ 𝐼| there exists 𝑤 ∈ 𝑁(𝑇, 𝑢) such that 𝑑𝑒𝑔𝐼(𝑤) = 1 },
that is, 𝑀 is the set of chemical nodes that can be immediately slid.

3. Repeat the following steps (i)–(iii) until 𝑀 = ∅.

(i) Select an arbitrary node 𝑢 ∈ 𝑀 , and remove it from 𝑀 and 𝐼.

(ii) Update 𝑑𝑒𝑔𝐼(𝑤) = 𝑑𝑒𝑔𝐼(𝑤)− 1 for each neighbor 𝑤 ∈ 𝑁(𝑇, 𝑢).

(iii) If 𝑑𝑒𝑔𝐼(𝑤) becomes one by the update (ii) above, then add the node 𝑢 ∈ 𝑁(𝑇,𝑤)∩𝐼

into 𝑀 .

4. Output 𝐼. Note that, since 𝑀 = ∅, all chemical nodes in 𝐼 are now (𝑇, 𝐼)-rigid.

Reference

[1] E. D. Demaine, M. L. Demaine, E. Fox-Epstein, D. A. Hoang, T. Ito, H. Ono, Y. Otachi, R.

Uehara, and T.akeshi Yamada, ’Linear-time algorithm for sliding tokens on trees’, Theoretical

Computer Science, Volume 600, Pages 132-142, 2015.

33



Almost blank page

34



Problem PL

Nine Never
Time limit: 3 seconds

Memory limit: 1024 megabytes

Problem Description

Once upon a time, there lived a great general called Tso who was well-known in arranging his

soldiers into small groups to perform different tasks. If possible, Tso would divide his soldiers

into as many groups as possible, so as to increase the flexibility. However, there was a little

secret that only very few people knew: When Tso was young, a fortune-teller warned him that

“9” would be a super unlucky number for him. So now, whenever Tso divided his soldiers

into groups, he would make sure that the total number of soldiers, in any combination of these

groups, would not be equal to 9.

For instance, when there are 𝑁 = 11 soldiers, we can divide the soldiers into three groups, with

3, 4, 4 soldiers, respectively, so that any combination would not sum up to exactly 9 soldiers

(the total number could only be 3, 4, 7, 8, or 11). Another way is to divide the soldiers into

four groups, with 1, 3, 3, 4 soldiers, respectively, so that again, any combination would not sum

up to exactly 9 soldiers (the total number could only be 1, 3, 4, 5, 6, 7, 8, 10, or 11). Since the

latter way has more groups, it is a better choice than the former way.

In contrast, if we divide the soldiers into eleven groups, one for each group, then we would

have even more groups; however, some combination (taking nine of these groups) would have

exactly 9 soldiers in total, so this will not be an acceptable division for Tso.

As one of Tso’s most reliable assistants, you are assigned the following task: Given a number

𝑁 of soldiers where 𝑁 ̸= 9, help Tso to find the maximum number 𝐾 of groups that can be

formed.

Input Format

The input has only one line, which contains a single positive integer 𝑁 .

Output Format

Let 𝐾 denote the desired maximum number of groups. The output has only one line, which

prints a non-negative integer 𝑋 such that 𝑋 is the remainder of 𝐾 when divided by 109 + 7.

That is, 𝑋 ≡ 𝐾 (mod 109 + 7) with 0 ≤ 𝑋 < 109 + 7.

35



Technical Specification

� 1 ≤ 𝑁 ≤ 1015

� 𝑁 ̸= 9

� 0 ≤ 𝑋 < 109 + 7

Sample Input 1

11

Sample Output 1

4

Sample Input 2

8

Sample Output 2

8

Sample Input 3

12345678901234

Sample Output 3

839407413

Hint

� When 𝑁 < 9, the best way to divide is 1, 1, . . . , 1, so that 𝐾 = 𝑁 .

� When 𝑁 is even and 𝑁 ≥ 10, we can show (or guess) that one of the best ways to form

groups is 2, 2, 2, . . . , 2, so that 𝐾 = 𝑁/2. See Tan et al. [Discrete Mathematics 2017,

340(6):1397–1404] (Corollary 2.2) for details.

� When 𝑁 is odd, and 𝑁 is sufficiently large, we can show that one of the best ways to form

groups is 11, 2, 2, . . . , 2, so that there are 1+ (𝑁 − 11)/2 groups formed. In particular, we

have:

Theorem: 𝑁 ≥ 29 is sufficient.

Proof: Let 𝐾 denote the value 1 + (𝑁 − 11)/2. Suppose to the contrary that 𝑁 ≥ 29

is not sufficient, so that more than 𝐾 groups can be formed. Since 𝑁 is odd, one of the

groups must be an odd number. Let 𝑧 denote the smallest of such odd numbers.

– If 𝑧 ≥ 11, then the number of groups is at most 𝐾, a contradiction.

– If 𝑧 = 9, then we have a group of size 9, a contradiction.

– If 𝑧 = 7, then we cannot have any 2 (or else we have a combination of 9). Thus, all

remaining groups will have size at least 4, so that there are at most ⌊1+ (𝑁 − 7)/4⌋
groups. This number is at most 𝐾 when 𝑁 ≥ 29. Thus, a contradiction.

– If 𝑧 = 5, then we can have at most one 2. Apart from it, all remaining groups will

have size at least 4. So, there are at most ⌊2 + (𝑁 − 5)/4⌋ groups. This number is

at most 𝐾 when 𝑁 ≥ 29. Thus, a contradiction.

– If 𝑧 = 3, then we can have at most two groups of 2 and at most one other group

36



of 3. Apart from them, all remaining groups will have size at least 4. So, there are

at most ⌊4 + (𝑁 − 10)/4⌋ groups. This number is at most 𝐾 when 𝑁 ≥ 29. Thus,

a contradiction.

– If 𝑧 = 1, then we separate the discussion into different cases.

* Case 1: The partition has exactly one 1 or two 1s. In this case, we can have

at most three groups of either size 2 or size 3. The remaining groups will have

size at least 4. So, there are at most ⌊5+ (𝑁 − 7)/4⌋ groups. This number is at

most 𝐾 when 𝑁 ≥ 29. Thus, a contradiction.

* Case 2: The partition has exactly three 1s or four 1s. In this case, we can have

at most two groups of either size 2, size 3, or size 4. The remaining groups will

have size at least 5. So, there are at most ⌊6+ (𝑁 − 7)/5⌋ groups. This number

is at most 𝐾 when 𝑁 ≥ 29. Thus, a contradiction.

* Case 3: The partition has exactly five or six 1s. In this case, we can have at

most one group of size 2 or size 3. However, we cannot have a group of size 4,

5, 6, 7, 8, 9, so that the remaining groups will have size at least 10. Thus, there

are at most ⌊7 + (𝑁 − 7)/10⌋ groups. This number is at most 𝐾 when 𝑁 ≥ 29.

Thus, a contradiction.

* Case 4: The partition has exactly seven or eight 1s. In this case, we cannot have

a group of size 2, 3, 4, 5, 6, 7, 8, 9 so that the remaining groups will have size

at least 10. Thus, there are at most ⌊8 + (𝑁 − 7)/10⌋ groups. This number is

at most 𝐾 when 𝑁 ≥ 29. Thus, a contradiction.

� For any odd 𝑁 < 29 (and 𝑁 ̸= 9), we search by brute-force all the possible partitions

of 𝑁 , and select one that contains the maximum number of parts, and at the same time

avoids a subset sum of 9. A possible speed up is that we will never need a number 𝑧

greater than 19, for we can make more parts by replacing 𝑧 with 10 and 𝑧 − 10.

37



Almost blank page

38



Problem PM

Task scheduler
Time limit: 1 second

Memory limit: 1024 megabytes

Problem Description

A simple task scheduler schedules tasks for an embedded system. Each task has a task ID,

priority value, and a function pointer to its corresponding callback function. The task ID is

represented by an integer ranging from 0 to 99. The priority value is represented by an integer

ranging from 0 to 255. The callback function is responsible for printing the associated task ID.

Tasks are added statically by developers. After 𝑁 tasks are added, the task scheduler starts to

schedule the tasks. The task with the smallest priority value will be scheduled first. If multiple

tasks have the same priority value, the task added to the system earliest will be scheduled first.

Now, let’s see what the system prints.

Input Format

The first line contains an integer 𝑇 , representing the number of test cases. Each test case below

includes three lines.

For each test case, the first line is an integer 𝑁 ≤ 100, representing the number of the following

two lines of integers. The second line contains 𝑁 integers, each integer representing the ID of

a task. The integer closer to the beginning of the second line indicates that its corresponding

task was added to the system earlier. The third line also contains 𝑁 integers, representing the

priority value. The 𝑖− 𝑡ℎ number in the third line is the priority value of the task represented

by the 𝑖− 𝑡ℎ number in the second line.

Output Format

Each test case outputs 𝑁 integers, separated by a space. These integers are the IDs of tasks,

and the order in which they are printed corresponds to the order in which they are scheduled.

Technical Specification

� 1 ≤ 𝑇 ≤ 10.

� 1 ≤ 𝑁 ≤ 100.

� 0 ≤ 𝑡𝑎𝑠𝑘𝐼𝐷 ≤ 99.

� 0 ≤ 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑣𝑎𝑙𝑢𝑒 ≤ 255.

39



Sample Input 1

4

1

0

5

3

0 1 2

1 0 0

4

0 1 2 3

6 4 2 2

8

0 1 2 3 4 5 6 7

10 12 12 3 1 3 1 1

Sample Output 1

0

1 2 0

2 3 1 0

4 6 7 3 5 0 1 2

Hint

� Create a linked list.

� Add a task to the linked list at an appropriate position.

� Traverse the existing nodes of the linked list. If the priority value of the visited node is

not higher than that of the task you are adding, continue to the next node. Otherwise,

insert the current task before the currently visited node.

� Once all tasks are added to the linked list, traverse the linked list once again.

40


